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In connection to the study of the isotonicity of the projection operator onto a
closed convex set in an ordered Hilbert space, Isac has recently remarked the
importance of an inequality named ``the property of four elements'' (PFE). In this
paper a sharp inequality closely connected to (PFE) is proved in a Banach space
setting. The property (PFE)V for Lyapunov functionals V is introduced and
studied. Some applications are included. � 1996 Academic Press, Inc.

1. INTRODUCTION

The metric projection operator PD onto a closed convex set D in a
Hilbert space or in a Banach space (satisfying some special properties) has
been deeply investigated and applied in different areas of mathematics such
as functional and numerical analysis, optimization and complementarity
theory etc. (see e.g. [1, 4, 6, 7�14, 17, and 20�21]). The projection operator
has been studied from several points of view as for example: smoothness,
differentiability, uniform continuity, etc. Another important and interesting
property seems to be the isotonicity with respect to an ordering defined by
a closed convex cone.

If (H,<,>) is a Hilbert space ordered by a closed convex cone K, the
ordering defined by K is that x� y if and only if y&x # K.
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If D/H is a closed convex set the projection operator PD onto D is
defined by

&PD(x)&x&= inf
y # D

&y&x&, for every x # H.

We say that PD is isotone if x� y implies that PD(x)�PD( y) for all
x and y in H. When D=K and PK is isotone we say that K is an isotone
projection cone. The isotone projection cones were studied in [9�14] and
recently in [4]. In [9�14] several applications are also presented. It is
interesting to know under which conditions the operator PD is isotone.
This problem has recently been studied by Isac in [15]. In this study the
following inequality plays a central role:

Let (H,<,>, K) be an ordered Hilbert space which is a vectorial lattice.
We say that K satisfies the property of four elements (PFE) if, for every
x1 , x2 , x3 , x4 # H such that x1�x3 , we have

(*) &x1&x2&2+&x3&x4&
2�&x1&x2 6 x4&

2+&x3&x2 7x4&
2.

We say that a subset D of H is latticially closed if, for every x, y # D,
x6 y # D, and x 7y # D. The following two results are proved in [15] by
using the property (PFE):

Theorem A. If (H,<,>, K) is an ordered Hilbert space such that with
respect to the ordering defined by K it is a vectorial lattice, then K satisfies
the property (PFE) if and only if (H,<,>, K) is a Hilbert lattice.

Theorem B. If (H,<,>, K) is a Hilbert lattice, then, for every convex
and latticially closed set D, the projection operator PD is isotone.

Now, in this paper we are interested to find the analogs of the property
(PFE) in some Banach spaces. In particular, we will prove that a corre-
sponding property (PFE)p holds for cones in the spaces Lp=Lp(0, +),
1� p�� (see Corollary 2.3). Here, and in the sequel, (0, +) denotes a
_-finite measure space. In fact, in this case the inequality corresponding to
(PFE) can be sharpened in a way so that it even holds in the reversed
direction for 0< p�1. We even state our main result in Section 2
(Theorem 2.2) in a setting where the Lp-spaces are replaced by the more
general functional spaces Ap . Moreover, the connection to Clarkson type
inequalities and interpolation is discussed, the limiting inequalities are
described and some further generalizations are pointed out (see Section 3).
The property (PFE)V for Lyapunov functionals is introduced and studied
(see Section 4) and some applications are presented (see Section 5).
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2. ON THE PROPERTY (PFE) IN SOME FUNCTIONAL SPACES

Let F denote a nonempty set and let L denote an additive set of real
valued functions g : F � R (i.e., if f, g # L, then f + g # L). we also consider
an isotone additive functional A : L � R, i.e., A satisfies

(i) A( f + g)=A( f )+A(g) for all f, g # L,

(ii) f, g # L, f (t)�g(t) for all t # F O A( f )�A(g).

If 0< p<� we say that f # Ap if Ap( f )=(A( | f | p)1�p<�.
The key step in our investigation is to prove the following lemma of

independent interest:

Lemma 2.1. Let x1 , x2 , x3 , and x4 be real numbers such that x1�x3 . If
p�1, then (%)p : |x1&x2 |p+|x3&x4|p�|x1&x2 6 x4|p+|x3&x2 7 x4|p+
2 |(x4 7 x1&x3 6x2) 6 0| p. The inequality (%)p holds in the reversed direc-
tion if 0< p�1.

Proof. First we remark that if x2�x4 , then the third term on the right-
hand side in (%)p is equal to zero and (%)p reduces to an equality. Hence
we may without loss of generality assume that x2�x4 .

Let p�1. We need to consider the following six cases:

(1) x3�x1�x2�x4 . Put a=x1&x3 , b=x2&x1 , c=x4&x2 and
consider the function h(a)=(a+b+c) p&(a+b) p.

We note that h is a nondecreasing function so that, in particular,
h(a)�h(0), which implies that

(%$)p : b p+(a+b+c) p�(a+b) p+(b+c) p,

i.e.,

(x2&x1) p+(x4&x3) p�(x4&x1) p+(x2&x3) p,

and this is the inequality (%)p for the case at hand.

(2) x2�x4�x3�x1 . Put a=x4&x2 , b=x3&x4 , c=x1&x3 , and
argue as in (1) to find that

(x1&x2) p+(x3&x4) p�(x1&x4) p+(x3&x2) p,

via (%$)p and (%)p is proved also for this case.
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(3) x3�x2�x1�x4 . Put a=x2&x3 , b=x1&x2 , and c=x4&x1 .
Then, by using the fact that (x+y) p�x p+y p for all x, y�0, we obtain

(x1&x2) p+(x4&x3) p=b p+(a+b+c) p�a p+c p+2b2

=(x4&x1) p+(x2&x3) p+2(x1&x2) p,

and (%)p is again proved for the actual case.

(4) x2�x3�x4�x1 . The proof is similar as that of the proof of the
case (3).

(5) x2�x3�x1�x4 . Put a=x3&x2 , b=x1&x3 and c=x4&x1 .
Then

(x1&x2) p+(x4&x3) p=(a+b) p+(b+c) p�a p+c p+2bp

=(x4&x1) p+(x3&x2) p+2(x1&x3) p,

and the inequality (%)p is proved for this case too.

(6) x3�x2�x4�x1 . The proof is analogous to that of the case (5).

The proof of the case 0< p�1 only consists of minor modifications of
the proof above. K

Now we are ready to formulate our main result in this section.

Theorem 2.2. Let A be an isotone additive functional and let 1� p<�.
If f1 , f2 , f3 , f4 # Ap and f1� f3 , then

(;)p : A p
p( f1& f2)+A p

p( f3& f4)

�A p
p( f1& f2 6 f4)

+A p
p( f3& f2 7 f4)+2A p

p(( f4 7 f1& f3 6 f2) 6 0).

If 0< p�1, then (;)p holds in the reversed direction.

Proof. Apply the functional A to the functions

f (t)=| f1(t)& f2(t)| p+| f3(t)& f4(t)| p,

g(t)=| f1(t)& f2(t) 6 f4(t)| p+| f3(t)& f2(t) 7 f4(t)| p

+2|( f4(t) 7 f1(t)& f3(t) 7 f2(t)) 6 0| p,

and use Lemma 2.1 together with the additivity and isotonicity properties
of A (note that A( |x| p)=A p

p(x)). K
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Corollary 2.3. If f1, f2, f3, f4 # Lp(0, +), 1<p<�, and f1(x)� f3(x)
a.e., then

& f1& f2 & p
p +& f3& f4 & p

p �& f1& f2 6 f4 & p
p +& f3& f2 7 f4 & p

p

+2&( f4 7 f1& f3 6 f2) 6 0& p
p .

For the case 0< p<1 the inequality holds in the reversed direction and for
the case p=1 we have equality.

Proof. We apply Theorem 2.2 with A( f )=�0 f d+. K

Example 2.4. For Lp=Lp(0, +) with 1� p<� the cone K=
[ f # Lp(0, +) | f �0 a.e.] has the following property:

(PFE)p {if f1 , f2 , f3 and f4 # Lp , then
& f1& f2 & p

p +& f3& f4 & p
p �& f1& f2 6 f4 & p

p +& f3& f2 7 f4 & p
p .

We note that (PFE)2 coincides with (PFE) for H=L2(0, +) (and xi= fi).
Moreover, Corollary 2.3 shows that in this case (PFE) holds even in the
sharper form obtained by adding the term 2&(x4 7x1&x3 6 x2) 6 0&2 to
the right hand side of (*).

3. FURTHER REMARKS AND RESULTS

Remark 3.1. By taking both sides in (%)p to the power 1�p and letting
p � � we obtain the following limiting inequality of the inequality (%)p :

(%)� : |x1&x2 | 6 |x3&x4 |

�|x1&x2 6 x4 | 6 |x3&x2 7 x4 | 6 |(x4 7 x1&x3 6 x2) 6 0|.

Similarly, for the case when x4 7x1&x3 6 x2�0 we can let p � 0+ to
obtain the following limiting inequality of the reversed inequality (%)p :

(%)0 : |x1&x2 | |x3&x4 |�|x1&x2 6x4 | |x3&x2 7 x4 |.

Here we only use the fact that the scale of power means [P:] converges to
the geometric mean P0 as : � 0+.

The corresponding limiting inequalities ;0 and ;� hold too.

Remark 3.2. Another proof of the inequality (%)p , 1< p<�, can be
obtained by interpolating with the complex method (c.f. [16]) between the
inequality (%)� and the easily verified equality

(%)1 : |x1&x2 |+|x3&x4 |
=|x1&x2 6 x4 |+|x3&x2 7 x4 |+2|(x4 7x1&x3 6 x2) 6 0|.
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Remark 3.3. An inequality of the type (%)p (or (;)p) with four involved
numbers (functions) can also be obtained by applying suitable variants of
Clarkson's inequality. In particular, by using [16, Proposition 2.1] we find
that

(,)p : |x1&x2 | p+|x3&x4 | p

�min(2&1, 21& p)( |x1+x3&x2&x4 | p+|x1+x4&x2&x3 | p)

for every p, 0<p<�. Both of the inequalities (%)p and (,)p are sharp but
the cases of equality are different.

If in the definition of the (isotone) linear functional A the condition (i)
is replaced by

(i)$ A( f+g)�A( f )+A(g)[A( f+g)�A( f )+A(g)] for all f, g # L,

then we say that A is an (isotone) subadditive [superadditive] functional.

Remark 3.4. Assume that the assumptions in Theorem 2.2 are satisfied
except that A is only subadditive. Then our method of proof only gives the
weaker inequality

(;$)p : A p
p( f1& f2)+A p

p( f3& f4)

�A p
p(( | f1& f2 6 f4 | p+| f3& f2 7 f4 | p+2|( f4 7 f1& f3 6 f2) 6 0| p)1�p),

( p�1) instead of (;)p . Similarly, for the superadditive case we can only get
the inequality

(;")p : A p
p(( | f1& f2 | p+| f3& f4 | 1�p)

�A p
p( f1& f2 6 f4)+A p

p( f3& f2 7 f4)+2A p
p(( f4 7 f1& f3 6 f2) 60).

Remark 3.5. One typical isotone additive functional is the L1-func-
tional A( f )=�0 f d+ considered in Corollary 2.3 which, via the Ap-con-
struction (convexification) defines the usual spaces Lp(0, +). Unfor-
tunately, the functionals A corresponding to the other ``usual'' function
spaces (e.g. Orlicz spaces, Lorentz spaces, Sobolev spaces, Besov spaces,
X p spaces, etc.) are not additive but only subadditive and therefore our
technique only give the somewhat weaker inequality (;$)p .

Example 3.6. Let X=(X, & } &X) be any Banach function space. Then
the space Xr, 1�r<�, is defined by the norm & f &X r=(&| f | r&X)1�r. It is
well-known that the functional A( f )=& f &X r is subadditive (see e.g. [19,
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Lemma 1.2]) and, thus, according to Remark 3.4, it holds that if
f1 , f2 , f3 , f4 # Xq and f1� f3 , then

(& f1& f2 &Xq) p+(& f3& f4 &Xq) p

�(&( f1& f2 6 f4 | p+| f3& f2 7 f4 | p+2|( f4 7 f1& f3 6 f2) 6 0)| p)1�p&Xq) p

for any q�p�1.

For the case q= p�1 and X=L1(0, +) this is exactly the statement in
Corollary 2.3.

Remark 3.7. By using the arguments applied in [16] we can obtain
further formal generalizations of our results. Here we only mention the
following result:

Theorem 2.2$. Let A, f1 , f2 , f3 , and f4 be as in Theorem 2.2. If p�1,
then

(;)p, r : (Ar
p( f1& f2)+Ar

p( f3& f4))1�r

�Kr, p(Ar
p( f1& f2 6 f4)+Ar

p( f3& f2 7 f4)

+2Ar
p(( f4 7 f1& f3 6 f2) 6 0))1�r,

where Kr, p=21�r&1�p when p�r and Kr, p=41�p&1�r when p�r.

Proof. Put a=Ap( f1& f2), b=Ap( f3& f4), c=Ap( f1& f2 6 f4), d=
Ap( f3& f2 7 f4) and e=Ap(( f4 7 f1& f3 6 f2) 6 0) and consider the func-
tions g(r)=(ar+br)1�r and h(r)=(cr+d r+2er)1�r. The imbedding between
1p spaces shows that both g and h are nonincreasing functions of r and the
monotonicity of the scale of power means guarantees that the functions
g(r) 2&1�r and h(r) 4&1�r both are nondecreasing functions of r. Moreover,
by Theorem 2.2, g( p)�h( p), and we find that if p�r, then

(Ar
p( f1& f2)+Ar

p( f3& f4))1�r

=(ar+br)1�r=21�rg(r) 2&1�r�21�rg( p)2&1�p

=Kr, pg( p)�Kr, ph( p)�Kr, ph(r)=Kr, p(cr+d r+2er)1�r

=Kr, p(Ar
p( f1& f2 6 f4)+Ar

p( f3& f2 7 f4)

+2Ar
p(( f4 7 f1& f3 6 f2) 60))1�r.

The proof of the case p�r is similar. K

A similar formal generalization can be given for the case 0< p�1 and
Theorem 2.2 coincides with the special case r=p.
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Moreover, the statements above can be further generalized by using the
well-known fact that also the more general scale of Gini means G(:, ;)
increases in both of the variables : and ; (note that G(:, 0)=P(:)), see
[19] and c.f. concluding remark 3 in [16].

If 1< p<� the space Lp(0, +) is a uniformly convex Banach space (see
[5]), ordered by the closed convex cone K=[ f # Lp(0, +) | f �0 a.e.] and
with respect to this ordering it is a vectorial lattice.

If D/Lp(0, +) is any closed convex cone the projection operator PD is
well defined, i.e., for every x # Lp(0, +), PD(x) is a singleton (see [3],
Proposition 5, p.194). By using the property (PFE)p proved before we
obtain the following result:

Theorem 3.8. For every latticially closed and closed convex set
D/Lp(0, +), 1< p<�, the projection operator PD is isotone with respect
to the ordering defined by K.

Proof. See [15]. K

4. ON THE PROPERTY (PFE)V FOR LYAPUNOV FUNCTIONALS

First we recall that the formula used in the definition of the metric pro-
jection operator in a Hilbert space H is equivalent to the minimization
problem

(#) : PD(x)=x� ; &x&x� &2= inf
! # D

&x&!&2.

Here D/H is a closed convex set. We also remark that V(x, !)=&x&!&2

can be considered not only as the square of the distance between the points
x and ! but also as the Lyapunov functional with respect to ! with x fixed.
Hence, we can rewrite (#) in the form

(#1) : PD(x)=x� ; V(x, x� )= inf
! # D

V(x, !).

Since in Hilbert spaces

V(x, !)=&x&2&2(x, !)+&!&2

it is natural to consider the following construction proposed by Alber [1]:
Let E be a uniformly convex and uniformly smooth Banach space and let

J : E � E* be the duality mapping. We consider the Lyapunov functional

V(J(x), !)=&J(x)&2
E*&2(J(x), !) +&!&2

E
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and we define

(#2) : PV
D (x)=x

*
; V(J(x), x

*
)= inf

! # D
V(J(x), !),

where D/E is a closed convex set.
The function V has some good properties as for example:

(i) V(J(x), !)�0 for all x, ! # E,

(ii) V(J(x), !) � � if &x& � � (or &!& � �).

Because of these properties we see that PV
D (x) is well defined and it is unique.

If (E, &&, K) is an ordered Banach space which is uniformly convex, uniformly
smooth and a vectorial lattice we introduce the following definition:

Definition 4.1. We say that the cone K satisfies the property of four
elements, (PFE)V , if x1 , x2 , x3 , x4 # E are such that x1�x3 , then

V(J(x1), x2)+V(J(x3), x4)�V(J(x1), x2 6 x4)+V(J(x3), x2 7 x4).

Our main result in this section reads:

Theorem 4.2. Let (E, & &, K) be an ordered Banach space which is
uniformly convex and uniformly smooth. If the cone K satisfies the property
(PFE)V , then, for every latticially closed, closed convex set D/E, the pro-
jection operator PV

D is isotone with respect to the order defined by K.

Proof. Let x, y # E be such that x� y. We denote x1= y, x2=PV
D( y),

x3=x, and x4=PV
D(x). Since K satisfies the property (PFE)V we have

V(J( y), PV
D( y))+V(J(x), PV

D(x))

�V(J( y), PV
D( y) 6 PV

D(x))+V(J(x), PV
D( y) 7PV

D(x)).

Moreover, since D is latticially closed it follows from the definition of PV
D that

V(J( y), PV
D( y))�V(J( y), PV

D( y) 6 PV
D(x)) and

V(J(x), PV
D(x))�V(J(x), PV

D( y) 7 PV
D(x)).

By combining these inequalities we obtain that

V(J( y), PV
D( y))�V(J( y), PV

D( y) 6PV
D(x))

�V(J( y), PV
D( y))+V(J(x), PV

D(x))

&V(J(x), PV
D( y) 7 PV

D(x))

�V(J( y), PV
D( y)).
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Hence

V(J( y), PV
D( y))=V(J( y), PV

D( y) 6 PV
D(x)),

and from the uniqueness of PV
D( y) we deduce that PV

D( y)=PV
D( y) 6 PV

D(x),
that is, PV

D(x)�PV
D( y), which means that PV

D is isotone.

Open Problem. It is important to characterize the cones which satisfies
the property (PFE)V .

5. APPLICATIONS

We indicate now some possible applications of the isotonicity of the pro-
jection operator onto a latticially closed set in a Hilbert lattice.

I. Let A : H � H be an arbitrary operator (not necessary linear),
: # R+"[0] an arbitrary number and . # H a fixed element. Let D/H be
a closed convex and latticially closed set. We consider the following varia-
tional problem:

VI(A, D): find x
*

# D such that (A(x
*

)&., y&x
*

)�0 for all y # D.

II. Let f : H � R be a continuous differentiable function and D/H a
closed convex and latticially closed set. We denote by {f (x) the gradient
of f at the point x. We say that x

*
# D is a constrained stationary point

(CSP) for f if and only if x
*

=PD [x
*

&{f (x
*

)]. We consider now the
problem

CSP( f, D) : find x
*

# D such that x
*

=PD [x
*

&{f (x
*

)].

The existence and the approximation of the solution x
*

of the problem
CSP( f, D) have been considered by several authors such as McCormic and
Tapia [17], Golomb and Tapia [7], and Phelps [20, 21].

In particular this problem is closed to the problem to minimize a con-
tinuous differentiable function with respect to an order simplex Sn(a, b) in
Rn, where, by definition,

Sn(a, b)=[t=(t1 , t2 , ..., tn) # Rn | a�t1�t2� } } } �tn=b].

An interesting paper on this subject is [8]. In order to study the problems
VI(A, D) and CSP( f, D) we will use the isotonicity of the projection
operator and the concept of heterotonic operator introduced by V. I.
Opoitsev [18].
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Definition 5.1 [18]. We say that the mapping T : H � H is
heterotonic on a set D/H if and only if there exists a mapping
fT : H_H � H such that

(1) fT(x, x)=T(x), for all x # D,

(2) fT(x, y) is monotone increasing with respect to x for all y,

(3) fT(x, y) is monotone decreasing with respect to y for all x.

We remark that in Definition 5.1 the mapping fT is not unique.

Definition 5.2. If T is heterotonic we say that (x
*

, y
*

) is a coupled
fixed point of T if fT (x

*
, y

*
)=x

*
, and fT ( y

*
, x

*
)=y

*
.

Here we note that every fixed point is a coupled fixed point if we take
(x

*
, x

*
). The converse is not true.

Definition 5.3. We say that a coupled fixed point (x
*

, y
*

) of a
heterotonic operator T is minimal and maximal with respect to D if for
every coupled fixed point (x� , y� ) of T in D we have x

*
�x� � y

*
and

x
*

� y� � y
*

.
If u0 , v0 # D are two elements such that u0�v0 , then we denote by

[u0 , v0]0 the order interval defined by u0 and v0 , that is, [u0 , v0]0=
[x # H | u0�x�v0].

Definition 5.4. We say that the order interval [u0 , v0]0 is strongly
invariant for the heterotonic operator T if u0 � fT (u0 , v0) and
fT (v0 , u0)�v0 .

We will also use the concepts of nonexpansive operator and condensing
operator (in Sadovski's sense) as defined and studied in [22].

We are now ready to formulate our main result in this section.

Theorem 5.5. Let (H,<,>, K) be a Hilbert lattice, D/H a subset and
T : H � H a heterotonic operator with respect to D. Assume that

(1) fT is continuous,

(2) there exist x0 , y0 # D such that [x0 , y0]0 is strongly invariant for
T and [x0 , y0]0 /D,

(3) T is nonexpansive and condensing.

Then T has a coupled fixed point (x
*

, y
*

) which is minimal and maximal
with respect to [x0 , y0]0 . Moreover, x

*
and y

*
can be computed by iterations
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and the set of fixed points of T with respect to [x0 , y0]0 is nonempty and
contained in [x

*
, y

*
]0 .

Proof. Using x0 and y0 we define the sequences [xn]n # N and [ yn]n # N

by

{xn+1= fT (xn , yn) for all n # N,
yn+1= fT( yn , xn) for all n # N.

We have x0�x1= fT (x0 , y0), y1= fT ( y0 , x0)� y0 and, by induction, we
find that xn�xn+1� yn+1� yn for all n # N.

Since T is heterotonic we can show that T([xn , yn]0)�[xn , yn]0 for all
n # N. Moreover, because H is a Hilbert lattice, K is normal and regular we
obtain that [xn]n # N and [ yn]n # N are convergent. We denote

x
*

= lim
n � �

xn and y
*

= lim
n � �

yn .

We have x
*

� y
*

and from the definition of [xn] and [ yn] and the con-
tinuity of fT we deduce that x

*
= fT (x

*
, y

*
) and y

*
= fT ( y

*
, x

*
), which

means that (x
*

, y
*

) is a coupled fixed point for T.
Let now (x� , y� ) be another coupled fixed point of T in [x0 , y0]0 . We can

show, again by induction, that xn�x� � yn and xn�y� � yn for all n # N and
by taking the limit we have x

*
�x� , y� � y

*
, that is, (x

*
, y

*
) is a minimal

and maximal coupled fixed point for T with respect to [x0 , y0]0 . Since we
have that T([x

*
, y

*
]0)�[x

*
, y

*
]0 we apply Brouwer's or Sadovski's

fixed point theorem and we have also proved the last part of the conclusion
of the theorem. K

Remark 5.6. If, for every x, y # [x0 , y0]0 such that x{ y we have
fT (x, y){x and fT ( y, x){y, then it is easily seen that we must in fact have
x

*
=y

*
in Theorem 5.5 and hence we find that x

*
is a fixed point of T in

this case.

Corollary 5.7. We consider the problem VI(A, D). Assume that, in
addition to the assumptions indicated in the definition of this problem, the
following hold:

(a) the function h(x)=x&Ax+. is continuous and h(x)=
T1(x)+T2(x), where T1 is increasing and T2 is decreasing,

(b) there exists x0 , y0 # D such that x0� y0 , [x0 , y0]0/D, x0�
T1(x0)+T2( y0) and T1( y0)+T2(x0)� y0 ,

(c) h is nonexpansive or compact.
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Then the problem VI(A, D) has a solution. Moreover, the solution set is a
subset of the order interval [x

*
, y

*
]0 , where

x
*

=limn � � xn , y
*

=limn � � yn ,

{xn+1=PD(T1(xn)+T2( yn)), n # N,

yn+1=PD(T1( yn)+T2(xn)), n # N.

Proof. We can apply Theorem 5.5 since h is heterotonic with fT (x, y)=
PD(T1(x)+T2( y)) for all x, y # D. K

Corollary 5.8. We consider the problem CSP( f, D). Suppose that, in
addition to the assumptions indicated in the definition of this problem, the
following assumptions are satisfied:

(a) the function h(x)=x&{f (x) is continuous and there exist T1 and
T2 such that h(x)=T1(x)+T2(x), with T1 increasing and T2 decreasing,

(b) there exists x0 , y0 # D such that x0� y0 , [x0 , y0]0 # D, x0�
T1(x0)+T2( y0) and T1( y0)+T2(x0)� y0 ,

(c) h is nonexpansive or compact.

Then the function f has a constrained stationary point in D. Moreover, the
order interval [x

*
, y

*
]0 contains all the constrained stationary points of f in

[x0 , y0]0 , where

x
*

=limn � � xn , y
*

=limn � � yn ,

{xn+1=PD(T1(xn)+T2( yn)), n # N,

yn+1=PD(T1( yn)+T2(xn)), n # N.

Proof. Apply Theorem 5.5 in the same way as in the proof of Corol-
lary 5.7. K

Final Remarks 5.9. (1) By analyzing our proof of Theorem 5.5 we see
that in this theorem and Corollaries 5.7�5.8 we can replace the assumption
that h has a decomposition h=T1+T2 by the assumption that ``h is
heterotonic.''

(2) If dim H<� the assumption 3) in Theorem 5.5 and Corollaries
5.7�5.8 is not necessary since using the continuity of h, the convexity of
[x

*
, y

*
]0 , the fact that this interval is bounded and-applying Brouwer's

fixed point theorem we obtain the conclusions of the theorem.

(3) Concerning the applications presented before it is particularly
interesting to extend Corollary 5.7 and Corollary 5.8 to Banach spaces by
using our results presented in this paper and the results presented in [1]
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and [14]. Evidently, to develop this idea it is necessary to first study the
isotonicity of the projection operator with respect to a Lyapunov func-
tional. We intend to present this development in a forthcoming paper.
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